Occurrence and Control of *Alternaria alternata*, *Penicillium citrinum* and *Aspergillus flavus* Mycotoxins in Broad Bean Seeds by Benzoic and Sorbic Acids

Ahmed I. A. Heflish ¹, I. A. El samra ¹ and N. H.Youssef ²

¹-Department of Agricultural Botany, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, Egypt.
²-Regional Centre for Food and Feed, Alexandria, Agricultural Researches Centre, Egyptian Ministry of Agriculture, El -Giza, Cairo, Egypt

E-Mail : ahmed_heflish@yahoo.com

ARTICLE INFO

ABSTRACT

Infected broad bean seeds were collected from Noubaria region during the season 2017-2018. Fungi isolated and purified from collected seeds were identified as *Aspergillus flavus*, *Penicillium citrinum* and *Alternaria alternata*. The occurrence frequencies of the isolated fungi were 9.08, 15.16 and 75.76 %, respectively. Production potentials of toxin by *Alternaria alternata* and *P. citrinum* isolates, as estimated by the Plug Agar method, were 23100 and 33700 ng/g, respectively. Production of aflatoxins by *A. flavus* isolates not detected. Sorbic and benzoic acids were showed to be more effective in reducing the growth of *A. alternata* and *P. citrinum* than metalaxyl and ridomyl fungicides. *A. alternata* was less sensitive to sorbic acid than benzoic acid. All the tested treatments significantly reduced the growth of *A. alternata* growth and alternariol (AOH) production; however, a higher efficiency ratio (99.86%) was realized by benzoic acid. Similar inhibition of growth and citrinin (CTN) production was found on *P. citrinum*. Metalaxyl was less efficient in inhibiting AOH and CTN toxins than the other tested treatments. The efficiency of benzoic and sorbic acids to reduce AOH and CTN production was higher by soaking seed treatment. Seeds inoculated with the tested fungi, then treated with sorbic or benzoic acid found to be healthy with normal color, texture and morphology.

INTRODUCTION

Broad bean (*Vicia faba*) is a common staple food in the Egyptian diet. The crop is exposed to infection with many fungal diseases, including those incited by mycotoxin-producing fungi, i.e., *Alternaria alternata* and *Penicillium citrinum*. Based on estimations of the Food and Agriculture Organization (FAO) of the United Nations, approximately 25% of the world's food crops are affected by mycotoxin producing fungi and global losses of food stuffs due to mycotoxins are in the range of 1000 million tons per year.

Alternaria is a common genus with a number of species that can invade crops at the pre and post-harvest stage and cause considerable losses due to the rotting of fruits and vegetables. Some species are fairly specific to particular crops (Broggi et al., 2007).
The black mould *Alternaria alternata* produces a wide diversity of mycotoxins which are of particular health concern. *Alternaria* species have the ability to produce more than 70 toxins, which play important roles in food safety since some of them are harmful to humans and animals (Laura Escrivá *et al.*, 2017). Since no maximum allowable limits are set for *Alternaria* toxins in food and feed, prevention of *Alternaria* infestations and mycotoxin spoilage is the only way to avoid health risks (Brzonkalik *et al.*, 2011, Hickert *et al.*, 2016, Puntscher *et al.*, 2019a). *A. alternata* is probably the most important mycotoxin-producing species which occurs on cereals, sunflower seeds, oilseed rape, olives, various fruits (Whitlow and Hagler, 2013; Zhao *et al.*, 2015; Puntscher *et al.* 2019b). The principle *alternaria* mycotoxins that have been shown to occur naturally are tenuazonic acid, alternariol monomethyl ether, alternariol, altenuene, and altertoxin I (Guo *et al.*, 2004 and Fox and Howlett, 2008; Gotthardt *et al.*, 2019). AAL-toxins are produced by *A. alternata* f. *Lycopersici*, a rarely occurring pathotype of *A. alternata*, and are structurally related to fumonisins (Logrieco *et al.*, 2009).

Citrinin is a mycotoxin isolated from *Penicillium citrinum*. It was found to be produced by a variety of other fungi that are found or used in the production of human foods, such as grain, cheese, cake and red pigments (Gordon *et al.*, 2010). Citrinin acts as a nephrotoxin in all species in which it has been tested, but its acute toxicity varies (Bennet and Klich, 2003). Citrinin induces mitochondrial permeability pore opening and inhibits respiration by interfering with complex I of the respiratory chain. Citrinin can permeate through the human skin (Boonen *et al.*, 2012).

The inhibition of fungal growth and mycotoxins production can be achieved by physical, chemical and biological treatments (FAO, 1997). Synthetic chemical fungicides are applied to control fungal growth and mycotoxins production, but they have not been found very effective against mycotoxins. Again, their use in plant protection was being de-emphasized due to mammalian toxicity and stimulation of resistance in pathogens stemming from their inappropriate or excessive applications (Tripathi and Dubey, 2004 and Enyiukwu *et al.*, 2014, Ben Taheur *et al.*, 2019). Heat treatment significantly reduced the concentration of alternariol, alternariol monomethyl ether and tenuazonic acid in *A. alternata* contaminated sunflower flour; however, the heat-treated material produced toxic effects when fed to rats (EFSA, 2011). These drawbacks reported in the literature necessitated the search for alternatives such as biological control and plant-based pesticides. Weak acids were also used as preservatives in the food and feed to prevent fungal spoilage. The most common weak acid preservatives are sorbic acid, benzoic acid and propionic acid (Eeckhout *et al.*, 2013).

Benzoic acid and sorbic acid salts are widely used as food preservatives (Mroueh *et al.*, 2007) and prevention and control of mould growth and mycotoxin production in cereals (Eeckhout *et al.*, 2013). Metalaxyl-M and Ridomyl MZ 72 are systemic fungicides that inhibit protein synthesis in fungi by interference with the synthesis of ribosomal RNA. They are used as foliar spray to control diseases caused by air and soil-borne fungi and to prevent mycotoxin production (Singh *et al.*, 2013). According to the available literature, production of *Alternaria* toxins in broad bean seeds by *Alternaria alternata* as well as reduction of mycotoxins concentration by treatment broad bean seeds with *Alternaria alternata* was emphasized due to mammalian toxicity stemming from their inappropriate or excessive applications (Tripathi and Dubey, 2004 and Enyiukwu *et al.*, 2014, Ben Taheur *et al.*, 2019). Heat treatment significantly reduced the concentration of alternariol, alternariol monomethyl ether and tenuazonic acid in *A. alternata* contaminated sunflower flour; however, the heat-treated material produced toxic effects when fed to rats (EFSA, 2011). These drawbacks reported in the literature necessitated the search for alternatives such as biological control and plant-based pesticides. Weak acids were also used as preservatives in the food and feed to prevent fungal spoilage. The most common weak acid preservatives are sorbic acid, benzoic acid and propionic acid (Eeckhout *et al.*, 2013).

Benzoic acid and sorbic acid salts are widely used as food preservatives (Mroueh *et al.*, 2007) and prevention and control of mould growth and mycotoxin production in cereals (Eeckhout *et al.*, 2013). Metalaxyl-M and Ridomyl MZ 72 are systemic fungicides that inhibit protein synthesis in fungi by interference with the synthesis of ribosomal RNA. They are used as foliar spray to control diseases caused by air and soil-borne fungi and to prevent mycotoxin production (Singh *et al.*, 2013). According to the available literature, production of *Alternaria* toxins in broad bean seeds by *Alternaria alternata* as well as reduction of mycotoxins concentration by treatment broad bean seeds with *Alternaria alternata* was emphasized due to mammalian toxicity stemming from their inappropriate or excessive applications (Tripathi and Dubey, 2004 and Enyiukwu *et al.*, 2014, Ben Taheur *et al.*, 2019). Heat treatment significantly reduced the concentration of alternariol, alternariol monomethyl ether and tenuazonic acid in *A. alternata* contaminated sunflower flour; however, the heat-treated material produced toxic effects when fed to rats (EFSA, 2011). These drawbacks reported in the literature necessitated the search for alternatives such as biological control and plant-based pesticides. Weak acids were also used as preservatives in the food and feed to prevent fungal spoilage. The most common weak acid preservatives are sorbic acid, benzoic acid and propionic acid (Eeckhout *et al.*, 2013).

Benzoic acid and sorbic acid salts are widely used as food preservatives (Mroueh *et al.*, 2007) and prevention and control of mould growth and mycotoxin production in cereals (Eeckhout *et al.*, 2013). Metalaxyl-M and Ridomyl MZ 72 are systemic fungicides that inhibit protein synthesis in fungi by interference with the synthesis of ribosomal RNA. They are used as foliar spray to control diseases caused by air and soil-borne fungi and to prevent mycotoxin production (Singh *et al.*, 2013). According to the available literature, production of *Alternaria* toxins in broad bean seeds by *Alternaria alternata* as well as reduction of mycotoxins concentration by treatment broad bean seeds with *Alternaria alternata* was emphasized due to mammalian toxicity stemming from their inappropriate or excessive applications (Tripathi and Dubey, 2004 and Enyiukwu *et al.*, 2014, Ben Taheur *et al.*, 2019). Heat treatment significantly reduced the concentration of alternariol, alternariol monomethyl ether and tenuazonic acid in *A. alternata* contaminated sunflower flour; however, the heat-treated material produced toxic effects when fed to rats (EFSA, 2011). These drawbacks reported in the literature necessitated the search for alternatives such as biological control and plant-based pesticides. Weak acids were also used as preservatives in the food and feed to prevent fungal spoilage. The most common weak acid preservatives are sorbic acid, benzoic acid and propionic acid (Eeckhout *et al.*, 2013).
Occurrence and control of *A. alternata*, *P. citrinum* and *A. flavus* mycotoxins in broad bean seeds

77

Treatment with benzoic and sorbic acids on the growth and mycotoxin production by these fungi as an alternative method to the application of fungicides.

MATERIALS AND METHODS

Broad bean seeds were collected from broad bean yield cultured in season 2017-2018 and brought to Plant pathology laboratory at Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University.

Seed Health Testing and Frequency of The Isolated Fungi:

Surface sterilization of 400 seeds was carried out using sodium hypochlorite 70%, sterilized deionized at ratio 1: 4, according to ISTA (1996). After sterilization process, seeds were placed on sterilized 9 cm diameter filter papers in Petri plates, moistened with 3 ml of distilled water each. Plates were incubated in a growth room at 25±2 °C for 8 days under alternative light and dark 12 hours each. Each treatment was replicated thrice (Christensen, 1957). After 8 days of incubation fungal species found growing on the surface of seeds were purified using the single spore technique (Hansen, 1926 and Javaid et al., 2006) or hyphal tip technique (Riker and Riker, 1936) and maintained on potato dextrose agar (PDA) slants. Isolates were then identified according to St. Germain and Summerbell (1996), Hoog et al. (2000), Simmons (2007) and Tiwari et al. (2011). Occurrence frequency percentage (FP%) was determined according to Javaid et al. (2006), Mossini and Kemmelmeir (2008) and El Wakil et al. (2009). The number of colonies growing on each plate was counted for each identified fungus, then their frequency percentages were calculated according to the formula, recommended by Pitt and Hocking (1997).

\[
\text{FP%} = \frac{\text{No. of seeds on which fungus appear}}{\text{Total No. of seeds}} \times 100 \times 100
\]

Mycotoxin Production Ability of The Isolated Fungi

The ability of the isolated fungi for the production of mycotoxins was carried out using a qualitative method (Agar plug), recommended by Frisvad and Thrane (1995) with minor modifications according to Mossini and Kemmelmeir (2008). The resulted fluorescence color was observed and registered.

Detection of Alternariol And Citrinin In Fungal Solid Cultures (confirmatory test):

Alternariol (alternariol) and citrinin were quantitatively detected in their solid cultures using HPLC-UV technique according to Azcarat et al. (2008) and Brzonkalik et al. (2011) at The Central Lab, Faculty of Pharmacy, Alexandria University. The obtained citrinin and alternariol standards were brought from Sigma, Aldrich, Cairo, Egypt.

Effect of the Tested Treatments on Fungal Radial Growth and Mycotoxin Reduction:

The effect of benzoic and sorbic acids tested treatments added to PDA culture, each on fungal growth was carried out using the colony growth measurement technique (Pitt and Hocking, 1997) and mycotoxin inhibition. Different concentrations of benzoic and sorbic acids (5, 10, 15 and 25 ppm) were used and compared its effectiveness with ridomyl and metalaxyl at their recommended dose (X) and, or (X) ± ½ X. The MIC values were determined and registered for each treatment according to Krisch et al. (2011).

Estimation of Citrinin And Alternariol In Infected Broad Bean Grains Treated with Sorbic And Benzoic Acids:

20 gm of infected broad bean grains were soaked for 12 hours in 100 ml deionized distilled water plus treatment at different concentrations as mentioned above and deionized distilled water as a control. At the end of the soaking process time, broad bean seed samples were re-soaked in 100 ml deionized distilled water for 4 hours to get rid of any acid traces, then grains were taken for alternariol and citrinin estimation after the accomplishment of the sensorial test according to Kütt et al. (2010), Asam et al. (2011) and Brzonkalik et al. (2011).

Sensorial Test:

Aspect and texture of the treated infected seeds were examined after each treatment to test the emergence of any adverse effect of the treatment on the
morphology of the treated infected grains in comparison to healthy ones.

RESULTS AND DISCUSSION

Identification and Occurrence Frequencies of Fungi Associated with Infected Broad Bean Grains:

Fungi associated with infected grains were isolated, purified and identified as *Alternaria alternata*, *Penicillium citrinum* and *Aspergillus flavus*. Their occurrence frequencies were shown in Table 1. *Alternaria alternata* showed the highest occurrence frequency (75.76%), followed by *Penicillium citrinum* (15.16%), whereas *Aspergillus flavus* was the least detected frequency (9.08%).

Mycotoxins Production Potential:

Toxins production potentials of the isolated fungi were tested using a qualitative Agar plug method. Colony fluorescence color was yellow for citrinin and bluish green for alternariol. These results were in agreement with Frisvad et al. (2007); Mossini & Kemmelmeir (2008) and Sofia Agiropoulou et al., (2020). No fluorescence appeared at amount time of aflatoxin standard which indicates the inability of the isolated *Aspergillus flavus* strain to produce aflatoxins.

Alternariol and *citrinin* were quantitatively detected using HPLC-UV technique according to Azcarat et al. (2008) and Brzonkalik et al. (2011). Results are presented in table (1). According to the obtained data, the ability of *Penicillium citrinum* isolates to produce citrinin (CTN) (337 µg/g) was higher than that of *Alternaria alternata* isolate to produce alternariol (AOH) (237 µg/g).

<table>
<thead>
<tr>
<th>Identified fungus</th>
<th>Frequency %</th>
<th>Mycotoxins production ability (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AOH</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>75.76</td>
<td>231.00</td>
</tr>
<tr>
<td>Penicillium citrinum</td>
<td>15.16</td>
<td>-</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>9.08</td>
<td>-</td>
</tr>
<tr>
<td>Total Frequency</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Where: AOH = Alternariol; CIT = citrinin; and AFLB = Aflatoxin B.

Results in Table (2) showed the effect of benzoic and sorbic acids at concentrations, 5, 10, 15 and 25 ppm comparing with metalaxyl and ridomyl fungicides at their recommended dose (X) and, or (X) ± ½ X on radial growth and mycotoxins inhibition. Minimum Inhibitory concentration (MIC) values were calculated and presented in table (3).

Effect of the Tested Treatments on Fungal Radial Growth and Mycotoxins Inhibition:

A. Alternaria alternata:

All the tested treatments have relatively similar efficacy in reducing the growth of *alternaria*, but benzoic acid was rather best, it realized the highest efficacy ratio (99.86%). These findings were, relatively, in agreement with those of Erich (1980) and Combina et al. (1999), who reported that levels above 10 mg/kg of sodium benzoate and potassium sorbate produced a total inhibition of fungal development and toxin biosynthesis. Our results were also in line with those reported by Embaby et al. (2013), Javaid et al. (2006), and Sitara and Hassan (2011), who concluded that ridomyl was effective against *Alternaria alternata* at concentrations 0.15 and 0.25%.

An increase in treatment's concentration in the present study was not necessarily followed by an increase in the fungal growth inhibition. However, the
Occurrence and control of *A. alternata*, *P. citrinum* and *A. flavus* mycotoxins in broad bean seeds

A relationship between the fungicide’s concentration and fungal growth inhibition was directly proportional. Benzoic acid (25ppm) and ridomyl 1 ½ X completely inhibited AOH production; however, fungal behaviour in responding against benzoic acid and ridomyl has differed. Our results are relatively in agreement with those of Uraih and Chipley (1976) and Uraih and Offonery (1981), who found that benzoic acid completely inhibited *Aspergillus flavus* growth and aflatoxin production at 10 mg/g.

Inhibition of *Alternaria* growth throughout our work was in line with that reported by Sofos and Busta (1983 and 1993) & (Gerez et al., 2016). They concluded that the antimicrobial effect of sorbic acid is due to its inhibitory influence on various enzymes in the microbial cell.

B. *Penicillium citrinum*:

All the tested concentrations of benzoic and sorbic acids and ridomyl at concentration 1 ½ X (350 ml/10 L) were similar in their efficiency in reducing fungal growth. The least *Penicillium* growth reduction rates were attained by Metalaxyl. These findings coincided with those of Cohen (1981), who found that metalaxyl enhanced *Penicillium* growth. This contradiction may due to variations in the tested isolates of *Penicillium citrinum*. The highest growth reduction rates were observed in ridomyl treatments. This was in harmony with those of Javaid *et al.* (2006), who found that mancozeb (ridomyl) was the most effective fungicide in reducing fungal growth in *Penicillium*.

C. MIC of the Tested Treatments:

Data in Table (3) indicated that metalaxyl at the tested concentrations failed in reaching MIC >90% growth inhibition. Fungal growth inhibition in general was more sensitive to treatments than mycotoxin inhibition. Both of the tested fungi have similar behavior toward both of the two tested acids; however, they differed in their response to the effect of the tested fungicides. *Penicillium citrinum* was more tolerant to both fungicides than *Alternaria alternata*. Similar results were obtained by Abd-El-Ghany and Tayel (2009), who reported that *Penicillium citrinum* was more tolerant to metalaxyl at high concentrations (400-800 ppm).

Table 2: Effects of the tested weak acids and fungicides on fungal growth and mycotoxins production

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Fungal radial growth/mm three replicates each</th>
<th>Efficacy ratio (ER) of treatments on radial growth %</th>
<th>mycotoxins production /µg/g</th>
<th>ER % on AOH and CIT reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. alternata</td>
<td>P. citrinum</td>
<td>A. alternata</td>
<td>P. citrinum</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>0.85</td>
<td>0.425</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.0 ppm</td>
<td>0.25</td>
<td>0.090</td>
<td>99.627</td>
<td>99.837</td>
</tr>
<tr>
<td>10 ppm</td>
<td>0.012</td>
<td>0.090</td>
<td>99.862</td>
<td>99.837</td>
</tr>
<tr>
<td>15 ppm</td>
<td>0.012</td>
<td>0.090</td>
<td>99.984</td>
<td>99.837</td>
</tr>
<tr>
<td>Sorbic acid</td>
<td>0.525</td>
<td>0.397</td>
<td>98.769</td>
<td>99.383</td>
</tr>
<tr>
<td>5.0 ppm</td>
<td>0.940</td>
<td>0.397</td>
<td>98.769</td>
<td>99.383</td>
</tr>
<tr>
<td>10 ppm</td>
<td>0.460</td>
<td>0.305</td>
<td>99.476</td>
<td>99.526</td>
</tr>
<tr>
<td>15 ppm</td>
<td>0.375</td>
<td>0.105</td>
<td>99.569</td>
<td>99.837</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>0.935</td>
<td>0.134</td>
<td>98.776</td>
<td>99.792</td>
</tr>
<tr>
<td>½ X</td>
<td>1.04</td>
<td>0.341 c</td>
<td>98.638</td>
<td>32.562</td>
</tr>
<tr>
<td>1 X</td>
<td>0.19</td>
<td>0.285 d</td>
<td>99.751</td>
<td>55.171</td>
</tr>
<tr>
<td>1 ½ X</td>
<td>0.11</td>
<td>0.628 b</td>
<td>99.856</td>
<td>2.416</td>
</tr>
<tr>
<td>Ridoxyal</td>
<td>1.48</td>
<td>10.2 e</td>
<td>98.062</td>
<td>84.073</td>
</tr>
<tr>
<td>½ X</td>
<td>1.83</td>
<td>9.60 c</td>
<td>98.906</td>
<td>85.083</td>
</tr>
<tr>
<td>1 X</td>
<td>2.24</td>
<td>0.7 f</td>
<td>90.686</td>
<td>98.912</td>
</tr>
</tbody>
</table>

L.S.D 0.05 0.50666 1.49717 4.50651 3.8749
Effect of water soaking process on mycotoxins production (Sensorial test):

Data in Table (4) indicated that the soaking process without the tested treatments did not significantly affect mycotoxin inhibition. Our results may appear incompatible and ambiguous with other findings concerning the washing grains process with tap water under pressure which significantly reduces the mycotoxin content in mould-contaminated grains by reducing fungal inocula (Wilson et al., 2004; Fandohan et al., 2005 and Jouany 2007). This contradiction may due to differences in the soaking process. Throughout the present experiment water soaking of infected seeds contaminated with mycotoxin was carried out without any water pressure. Washing infected seeds under water pressure may lead to the removal of the fungal spores and consequently reduced the produced mycotoxin.

The efficiency of benzoic and sorbic acids in reducing AOH increased during the soaking process. All the tested concentrations except for 25 ppm treatment gave higher reduction rates during the soaking process. Our results are partially in agreement with Darman (2013). On the other hand, during the soaking process, all the tested concentrations of both acids significantly inhibited CTN production.

Generally, our findings fairly consistent with those of Ragab et al., (2007), who reported that modifying the traditional process of 'balila' preparation by using Na₂CO₃ solution during the water soaking process may be useful to reduce the risk of mycotoxin exposure via 'balila'. The soaking process ameliorate the efficiency of the tested weak acids.

Table 3: Minimum inhibitory concentration (MIC) of the tested treatments.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>MIC A. alternata</th>
<th>MIC P. citrinum</th>
<th>Alternariol</th>
<th>Citrinin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acid</td>
<td>5 ppm</td>
<td>5ppm</td>
<td>25ppm</td>
<td>15ppm</td>
</tr>
<tr>
<td>Sorbic acid</td>
<td>5ppm</td>
<td>5ppm</td>
<td>25ppm</td>
<td>15ppm</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>½ X</td>
<td>(*)</td>
<td>½ X</td>
<td>½ X</td>
</tr>
<tr>
<td>Ridomyl</td>
<td>½ X</td>
<td>1½X</td>
<td>1½ X</td>
<td>1½ X</td>
</tr>
</tbody>
</table>

Table 4: Effect of seed re-water soaking process on mycotoxins production throughout the tested treatments.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Av. of AOH µg/kg</th>
<th>E.R. % of Soak.P</th>
<th>Av. of CTN µg/kg</th>
<th>E.R. % of Soak.P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soak. control</td>
<td>229.656a</td>
<td>-</td>
<td>334.104a</td>
<td>0.4458*</td>
</tr>
<tr>
<td>Non Soak control</td>
<td>230.786a</td>
<td>0.4896</td>
<td>335.600a</td>
<td>---------</td>
</tr>
<tr>
<td>Soak + Benzoic 5ppm</td>
<td>16.587cd</td>
<td>92.777</td>
<td>49.579c</td>
<td>85.161</td>
</tr>
<tr>
<td>Soak + Benzoic 10ppm</td>
<td>14.925cde</td>
<td>93.501</td>
<td>24.789d</td>
<td>92.570</td>
</tr>
<tr>
<td>Soak + Benzoic 15ppm</td>
<td>10.837de</td>
<td>95.281</td>
<td>0.000e</td>
<td>100.0</td>
</tr>
<tr>
<td>Soak + Benzoic 25ppm</td>
<td>7.9420e</td>
<td>96.542</td>
<td>0.000e</td>
<td>100.0</td>
</tr>
<tr>
<td>Soak + Sorbie 5ppm</td>
<td>23.794b</td>
<td>89.639</td>
<td>67.635b</td>
<td>79.756</td>
</tr>
<tr>
<td>Soak + Sorbie 10ppm</td>
<td>19.589bc</td>
<td>91.470</td>
<td>27.805d</td>
<td>91.678</td>
</tr>
<tr>
<td>Soak + Sorbie 15ppm</td>
<td>16.455cd</td>
<td>92.835</td>
<td>0.000e</td>
<td>100.0</td>
</tr>
<tr>
<td>Soak + Sorbie 25ppm</td>
<td>13.123cde</td>
<td>94.286</td>
<td>0.000e</td>
<td>100.0</td>
</tr>
<tr>
<td>L.S.D 0.05</td>
<td>5.27712</td>
<td>4.27495</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where: SOAK = soaking broad bean seeds in distilled water; ER% of Soak.P = Efficacy ratio of soaking process = (soaked seeds - soaked seeds + treatment/soaked seeds) x100; AOH = Alternariol; CTN = Citrinin; and * = (Non soaked seeds- soaked seeds/Non soaked seeds) x100.
The appearance, texture and overall shape of the treated infected seeds were similar to those of the natural seeds. However, water-soaked seeds appeared steel blackish, which may be due to changes in the chemical structure of water during the soaking process which allows seeds to get rid of pigment. Koffi-Nevry et al. (2013) found that water soaking reduces some nutritive components involved in the activation of enzymes responsible for mycotoxin production. These findings were explained by Calvo et al. (2002), who found that in Alternaria alternata, melanin pigment deposition is also involved in spore development. Disruption of the A. alternata melanin biosynthetic gene brm2 dramatically decreases melanin production in this fungus (Kumura and Tsuge 1993), and Kawamura et al. (1999). In our study, this disruption of melanin biosynthesis may occur as a result of denaturation of gene brm2 encoding enzymes responsible for melanin production enhanced by treatment with benzoic and sorbic acids during water soaking. This finding was highly in agreement with those of Shad et al. (2012), who reported that sorbic acid works on the active sites of enzymes and interacted with the substrate to inactivate enzymes. This enzyme's inactivation was positively proportional to sorbic acid concentration.

Inhibition of alternariol and citrinin by benzoic and sorbic acids throughout the present study may due to the inhibition of the accumulation of Acetyl CoA, the precursor of mycotoxins biosynthesis (Uraih et al., 1977; Hajjaj et al., 1999; Scott, 2001; Elizabeth, 2008 and Saha et al., 2012) and preventing the condensation of acetyl CoA with malonyl (Eeckhout et al., 2013), which finally resulted in complete blocking of mycotoxins biosynthesis.

CONCLUSION

According to the obtained results, we can remark that benzoic and sorbic acids are highly effective in inhibiting A. alternata, P. citrinum growth and alternariol and citrinin production by these fungi.

The problem of non-safe use of these food preservatives does not exist in our study because the tested concentrations of these acids were less than recommended doses (Codex Alimentarius, 1991). In addition to that broad bean seeds greatly differed in structure, compared with acidic foods and beverages. Furthermore, For humans, the World Health Organization's International Programme on Chemical Safety (IPCS, 1999&2004, and JECFA, 2005) suggests a provisional tolerable intake for infants would be 5 mg/kg body weight per day for benzoic acid and its salts (Takao and Takeda, 2003 and WHO, 2009).

There are currently no statutory or guideline limits set for Alternaria mycotoxins because surveys to date have shown that their natural occurrence in foods is very low and the possibility for human exposure is very limited. The need for regulation is kept under review as new information becomes available.

The re-water soaking process proves that benzoic and sorbic acids are not acting as fungistatic but fungicides. So, we can consider these tested weak acids as fungicides alternatives to metalaxyl and ridomyl synthetic fungicides.

REFERENCES

EFSA (European Food Safety Authority), EFSA Panel on contaminants in the food Chain 2011. Scientific opinion on the risks for animal and public health related to the presence of *Alternaria* toxins in feed and food. [EFSA Panel on contaminants in the food chain (CONTAM), Parma, Italy]. *EFSA Journal*, 9(10): 2407.

Occurrence and control of *A. alternata*, *P. citrinum* and *A. flavus* mycotoxins in broad bean seeds

Uraih, N. and Chipley, J.R. (1976). Effects of various acids and salts on growth and aflatoxin production by *Aspergillus*...

ملاحظات ومقاومة السموم الفطرية للأذناريا الترناتا، بنيسيليوم سترينيم، وأسبرجلس فلافس على بذور الفول بوسطة أحاسس البنزويك والسوربيك

أحمد إبراهيم عبد البارى، حفلش، نسرين يوسف, نسيرين يOUSEF²

1 قسم النبات الزراعي، كلية الزراعة، جامعة الإسكندرية، الإسكندرية، مصر.
2 مركز البحوث الزراعية، وزارة الزراعة المصرية، مصر.

استهدفت الدراسة تعرف على الفطريات المصاحبة للبذور وتينيتها وتعريفها، واختبار مدى قدرة السلالات الفطرية المعزولة على إنتاج السموم الفطرية وتعريف كمية ونوعية هذه السموم، ولقد توصل البحث إلى عزل سلالات من فطر أذناريا الترناتا، بنيسيليوم بنيسيليوم سترينيم، وأسبرجلس فلافس بنسب تواجد بلغت 75.76%, 15.16%, و9.08%, على التوالى. ولقد دلت الإختبارات على قدرة سلالة الأذناريا على إفراز الأذناريول بنسبة 23100 ng/g، وقوة سلالة البنيسيليوم على إفراز السترينين بنسبة 33700 ng/g، ولم تتمكن سلالة أسبرجلس من إفراز الأفلاتوكسين. لتلك استعداد الماء من الدراسة. ومعاملة البذور بكل من الحمضين البنزويك والسوربيك، وبيتالاكسيل وريدوميل، تبين نتائج فاعلية الأحماض المختبرة على المبيدات الفطرية في قدرتها على خفض النمو الفطري للفطرين محل الاختبار. وكان الغط أذناريا الترناتا أقل حساسية لحمض السوربيك بالمقارنة بحمض البنزويك. وتقاربت نتائج نتائج تثبيط النمو الفطري في جميع معاملات الأذناريا مع تفوق طفيف لحمض البنزويك. كما أظهرت معامل معاملات البنزويرا عالية الكفاءة، عدا الميتالاكسيل. كما أدت جميع المعاملات، عدا الميتالاكسيل، إلى خفض إنتاج السموم المختبرة. بل تعددت الأنواع على احترام تتالي تم إنتاجها. أدت عملية النقع للبذور الغير معاملة بالبودرة إلى احتراق البذور في وقود البنزويك والسوربيك. حيث أدت عملية النقع في وجود البذور في المليون لحمضي البنزويك والسوربيك. على التوالى. ولقد أظهرت النتائج الحيوية التي تم تفوق عملية النقع باعتبار تفاؤلية صيغة المبايلين السواداء والمميزة للاصابة بفطر أذناريا الترناتا، وذك في البذور الموقعة في الماء، والمعالجة فقط حيث أصدرت نتائج النقع المقصورة لونها الطبيعي وأصبحت البذور المقصورة تتمل البذور السليمة في شكلها الظاهر من حيث لونها ونسج البذورنها.